
Chapter 7: DeadlocksChapter 7: DeadlocksChapter 7: DeadlocksChapter 7: Deadlocks

Chapter 7: DeadlocksChapter 7: Deadlocks

 System Model
 Deadlock Characterization Deadlock Characterization
 Methods for Handling Deadlocks
 Deadlock Prevention Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection Deadlock Detection
 Recovery from Deadlock

7.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter ObjectivesChapter Objectives

 To develop a description of deadlocks,
which prevent sets of concurrent which prevent sets of concurrent
processes from completing their tasks

 To present a number of different methods
for preventing or avoiding deadlocks in a
computer system.

7.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DeadlockDeadlock

 A process requests resources;
 If the resources are not available at that time, the If the resources are not available at that time, the

process goes to waiting state.
 Sometimes a waiting process is never again able Sometimes a waiting process is never again able

to change state, because the resources it
requested are held by other waiting processes.

 This situation is called deadlock.

7.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System ModelSystem Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
 Each resource type Ri has Wi instances.

(Eg., Resource type Printer has two instances)(Eg., Resource type Printer has two instances)
 Each process utilizes a resource as follows:

 request (wait if it is used by another process) request (wait if it is used by another process)
 use
 Release Release

 The request and release of resources are system
calls (request() and release()).

7.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

calls (request() and release()).

Deadlock CharacterizationDeadlock Characterization

Necessary conditionsNecessary conditions
Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion: At least one resource must be held in a non-
sharable mode; that is only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes.

 No preemption: Resources can not be preempted; that is a No preemption: Resources can not be preempted; that is a
resource can be released only voluntarily by the process holding
it, after that process has completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P is waiting for a resource that is held by

0 1 0
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
P , and P is waiting for a resource that is held by P .

7.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pn, and Pn is waiting for a resource that is held by P0.

ResourceResource--Allocation GraphAllocation Graph
 Deadlocks are described using resource allocation graph.
 A set of vertices V and a set of edges E.
 V is partitioned into two types: V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

 request edge – directed edge Pi Rj (Pi has requested
an instance of resource type Rj and is currently waiting for
that resource).

 assignment edge – directed edge Rj Pi (an instance of
resource type Rj has been allocated to process Pi)

7.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

When process P requests an instance of resource type R , a When process Pi requests an instance of resource type Rj, a
request edge is inserted in the resource allocation graph.

 When this request is fulfilled, the request edge is When this request is fulfilled, the request edge is
transformed into assignment edge.

 Assignment edge is deleted when a resource is released.

7.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ResourceResource--Allocation Graph (Cont.)Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rji j

 Pi is holding an instance of Rj

Pi

Rj
 Pi is holding an instance of Rj

Pi

7.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pi

Rj

Example of a Resource Allocation GraphExample of a Resource Allocation Graph

7.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Resource allocation graph in the figure shows the following
situationsituation

 Resource instances:
 One instance of resource type R1

 Two instances of resource type R Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

 The sets P, R and E are
 P = { P1, P2, P3 }
 R = { R1, R2, R3, R4 }
 E = { P1 R1, P2 R3 , R1 P2 , R2 P2, R2 P1, R3 P3 }

 Process states Process states
 Process P1 is holding an instance of resource type R2 and is

waiting for an instance of resource type R1.
 Process P2 is holding an instance of R1and an instance of R2

7.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Process P2 is holding an instance of R1and an instance of R2
and is waiting for an instance of R3.

 Process P3 is holding an instance of R3.

Basic FactsBasic Facts

 If graph contains no cycles no deadlock.

 If graph contains a cycle dead lock may exist.
 if only one instance per resource type, then deadlock. In this

case a cycle in a graph is both a necessary and sufficient
condition for the existence of a deadlock.

 if several instances per resource type, cycle does not if several instances per resource type, cycle does not
necessarily imply that deadlock has occurred.

7.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A DeadlockResource Allocation Graph With A Deadlock

7.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Suppose that process P3 requests an instance of R2; so
P3 R2 is added to the graph.

 At this point, two minimal cycles exists.

 P1 R1 P2 R3 P3 R2 P1
 P2 R3 P3 R2 P2 P2 R3 P3 R2 P2

 Processes P1, P2, P3 are deadlocked.
 P2 is waiting for the resource R3 which is held by process

P3. process P3 is waiting for either P1 or P2 to release R2.
In addition, P1 is waiting for P2 to release R1.

7.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A Cycle But No DeadlockResource Allocation Graph With A Cycle But No Deadlock

7.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 In this Figure, we have a cycle.
 P1 R1 P3 R2 P1 P1 R1 P3 R2 P1
 However there is no deadlock.
 If process P4 releases one instance of R2, then that

resource can be allocated to P3, breaking the cycle.resource can be allocated to P3, breaking the cycle.

7.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Methods for Handling DeadlocksMethods for Handling Deadlocks

 Ensure that the system will never enter a
deadlock state.

 Allow the system to enter a deadlock state, Allow the system to enter a deadlock state,
detect it and then recover.

 Ignore the problem and pretend that
deadlocks never occur in the system; used
by most operating systems, including UNIX.by most operating systems, including UNIX.

7.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock PreventionDeadlock Prevention

 For a deadlock to occur, each of the
following four necessary conditions mustfollowing four necessary conditions must
hold.

I. Mutual ExclusionI. Mutual Exclusion
II. Hold and Wait
III. No PreemptionIII. No Preemption
IV. Circular Wait

 By ensuring at least one of these
conditions cannot hold, we can prevent the

7.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

conditions cannot hold, we can prevent the
occurrence of deadlock.

Deadlock PreventionDeadlock Prevention
 Mutual Exclusion – not required for sharable

Restrain the ways request can be made.
 Mutual Exclusion – not required for sharable

resources (Eg. read only files); must hold for
nonsharable resources (Eg. Printer)

 Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources.

Method I
 Require process to request and be allocated all its

resources before it begins execution, resources before it begins execution,
Method II
 Allow process to request resources only when the

process has none.process has none.

7.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Eg., Process that copies data from a DVD drive to a file on
a disk, sort the file, and then prints the result. a disk, sort the file, and then prints the result.

When Method I is used
 Here all the 3 resources must be requested at the Here all the 3 resources must be requested at the

beginning of the process
When Method II is used
 Process initially request only DVD and disk file ; Process initially request only DVD and disk file ;
 it copies from the DVD drive to the disk and then

releases both;
 The process then must again request disk file and the

printer;
 After copying the disk file to the printer it releases both. After copying the disk file to the printer it releases both.
Disadvantages of both methods

 Low resource utilization; starvation possible.

7.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock Prevention (Cont.)Deadlock Prevention (Cont.)
 No Preemption –

 If a process that is holding some resources requests
another resource that cannot be immediately
allocated to it (that is, process must wait), then all allocated to it (that is, process must wait), then all
resources currently being held are preempted
(implicitly released).

 The preempted resources are added to the list of The preempted resources are added to the list of
resources for which the process is waiting.

 Process will be restarted only when it can regain its
old resources, as well as the new ones that it is old resources, as well as the new ones that it is
requesting.

 Circular Wait – impose a total ordering of all resource Circular Wait – impose a total ordering of all resource
types, and require that each process requests
resources in an increasing order of enumeration.
 Eg. tape drive, disk drive, printer

7.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Eg. tape drive, disk drive, printer

Deadlock AvoidanceDeadlock Avoidance

Requires that the system has some additional a priori information
available.

 Simplest and most useful model requires that each
process declare the maximum number of resources
of each type that it may need.

available.

of each type that it may need.

 The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

7.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Safe StateSafe State
 When a process requests an available resource, system

must decide if immediate allocation leaves the system in a must decide if immediate allocation leaves the system in a
safe state.

 System is in safe state if there exists a safe sequence of all
processes. processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied by
currently available resources + resources held by all the Pj, currently available resources + resources held by all the Pj,
with j<i.
 If Pi resource needs are not immediately available, then

Pi can wait until all Pj have finished.Pi can wait until all Pj have finished.
 When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed When Pi terminates, Pi+1 can obtain its needed

resources, and so on.
 If no such sequence exists, then the system state is said to

be unsafe.

7.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

be unsafe.

Basic FactsBasic Facts

 If a system is in safe state no
deadlocks.deadlocks.

 If a system is in unsafe state possibility If a system is in unsafe state possibility
of deadlock.

 Avoidance ensure that a system will
never enter an unsafe state.

7.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Safe, Unsafe , Deadlock State Safe, Unsafe , Deadlock State

7.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

EgEg., Consider a system with 12 magnetic tape drives. ., Consider a system with 12 magnetic tape drives.
At time tAt time t0 , 0 ,

process Maximum
needs

Current
needs

P0 10 5P0 10 5
P1 4 2
P2 9 2

 at time t0, the system is in a safe state. The sequence
<P1,P0, P2> satisfies the safety condition.

 A system can go from safe to unsafe state. A system can go from safe to unsafe state.
 At time t1, process p2 requests and is allocated one more

tape drive; the system is no longer in a safe state.
 Deadlock results. Deadlock results.
 Our mistake was granting the request from process p2 for

one more tape drive.

7.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 If we had p2 wait until either of the other processes had
finished and released the resources, deadlock is avoided.

ResourceResource--Allocation Graph AlgorithmAllocation Graph Algorithm
 Applicable when One instance of each

resource type are available.
Claim edge P R indicated that process P Claim edge Pi Rj indicated that process Pj
may request resource Rj at some time in
future (represented by a dashed line).future (represented by a dashed line).

 Claim edge converts to request edge when a
process requests a resource.

 When a resource is released by a process,
assignment edge reconverts to a claim edge.
Resources must be claimed a priori in the Resources must be claimed a priori in the
system.

7.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ResourceResource--Allocation Graph For Deadlock AvoidanceAllocation Graph For Deadlock Avoidance

7.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Unsafe State In ResourceUnsafe State In Resource--Allocation GraphAllocation Graph

7.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Banker’s AlgorithmBanker’s Algorithm

 Multiple instances.

 When a new process enters the system, it
must declare the maximum number of must declare the maximum number of
instances of each resource type that it may
need.
When a process requests a resource it may When a process requests a resource it may
have to wait.

 When a process gets all its resources it
must return them in a finite amount of time.

7.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Data Structures for the Banker’s Algorithm Data Structures for the Banker’s Algorithm

Available: Vector of length m. If available [j] = k,

Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj
available.

 Max: n x m matrix. If Max [i,j] = k, then process
Pi may request at most k instances of resource
type Rj.type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k
then Pi is currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task.

7.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Need [i,j] = Max[i,j] – Allocation [i,j].

Safety AlgorithmSafety Algorithm

1. Let Work and Finish be vectors of length m and
n, respectively. Initialize:n, respectively. Initialize:

Work = Available
Finish [i] = false for i =0,1,2,3, …, n-1.

2. Find an i such that both: 2. Find an i such that both:
(a) Finish [i] = false
(b) Need Work(b) Needi Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in

7.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

4. If Finish [i] == true for all i, then the system is in
a safe state.

ResourceResource--Request Algorithm for Process Request Algorithm for Process PPii

Request = request vector for process Pi. If RequestiRequest = request vector for process Pi. If Requesti
[j] = k then process Pi wants k instances of resource
type Rj.

1. If Requesti Needi go to step 2. Otherwise, 1. If Requesti Needi go to step 2. Otherwise,
raise error condition, since process has
exceeded its maximum claim.

2. If Requesti Available, go to step 3. Otherwise 2. If Requesti Available, go to step 3. Otherwise
Pi must wait, since resources are not available.

3. Pretend to have allocated the requested
resources to P by modifying the state as follows:resources to Pi by modifying the state as follows:

Available = Available-Requesti;
Allocationi = Allocationi + Requesti;Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe the resources are allocated to Pi.
If unsafe Pi must wait, and the old

7.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 If unsafe Pi must wait, and the old
resource-allocation state is restored

Example of Banker’s AlgorithmExample of Banker’s Algorithm

 5 processes P0 through P4; 3 resource types A
(10 instances), (10 instances),
B (5instances, and C (7 instances).

 Snapshot at time T0: Snapshot at time T0:
Allocation Max Available

A B C A B C A B CA B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2 P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2

7.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)Example (Cont.)
 The content of the matrix. Need is defined to be

Max – Allocation.
NeedNeed
A B C

P 7 4 3 P0 7 4 3
P1 1 2 2
P 6 0 0 P2 6 0 0
P3 0 1 1
P 4 3 1 P4 4 3 1

 The system is in a safe state since the sequence

7.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 The system is in a safe state since the sequence
< P1, P3, P4, P2, P0> satisfies safety criteria.

Example Example PP11 Request (1,0,2) (Cont.)Request (1,0,2) (Cont.)
 Check that Request Available (that is, (1,0,2)

(3,3,2) true.(3,3,2) true.
Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence
<P1, P3, P4, P0, P2> satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted?

7.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Can request for (3,3,0) by P4 be granted?
 Can request for (0,2,0) by P0 be granted?

7.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock DetectionDeadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

7.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Single Instance of Each Resource TypeSingle Instance of Each Resource Type

 Maintain wait-for graph
 Nodes are processes.
 Pi Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that
searches for a cycle in the graph.searches for a cycle in the graph.

 An algorithm to detect a cycle in a graph An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph.

7.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ResourceResource--Allocation Graph and WaitAllocation Graph and Wait--for Graphfor Graph

7.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource TypeSeveral Instances of a Resource Type

 Available: A vector of length m indicates the
number of available resources of each type.number of available resources of each type.

 Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process.

 Request: An n x m matrix indicates the
current request of each process. If Request
[ij] = k, then process Pi is requesting k more
instances of resource type. Rj.

7.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection AlgorithmDetection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:respectively Initialize:
(a) Work = Available
(b)For i = 1,2, …, n, if Allocationi 0, then (b)For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:

(a)Finish[i] == false
(b)Requesti Worki

If no such i exists, go to step 4.

7.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Detection Algorithm (Cont.)Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = trueFinish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the 4. If Finish[i] == false, for some i, 1 i n, then the
system is in deadlock state. Moreover, if Finish[i]
== false, then Pi is deadlocked.

7.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Detection AlgorithmExample of Detection Algorithm
 Five processes P0 through P4; three resource

types types
A (7 instances), B (2 instances), and C (6
instances).

 Snapshot at time T0:
AllocationRequest Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

7.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

4

 Sequence <P0, P2, P3, P1, P4> will result in
Finish[i] = true for all i.

Example (Cont.)Example (Cont.)

 P2 requests an additional instance of type C.
RequestRequest

A B C
P 0 0 0P0 0 0 0
P1 2 0 1
P 0 0 1P2 0 0 1
P3 1 0 0
P 0 0 2P4 0 0 2

 State of system?
Can reclaim resources held by process P , but Can reclaim resources held by process P0, but
insufficient resources to fulfill other processes;
requests.

7.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

requests.
 Deadlock exists, consisting of processes P1,

P2, P3, and P4.

DetectionDetection--Algorithm UsageAlgorithm Usage

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur? How often a deadlock is likely to occur?
 How many processes will need to be rolled

back?back?
one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and so
we would not be able to tell which of the many we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

7.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery from Deadlock: Process TerminationRecovery from Deadlock: Process Termination
 Abort all deadlocked processes. Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is Abort one process at a time until the deadlock cycle is
eliminated.

 In which order should we choose to abort? In which order should we choose to abort?
 Priority of the process.
 How long process has computed, and how much How long process has computed, and how much

longer to completion.
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.

7.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Is process interactive or batch?

Recovery from Deadlock: Resource PreemptionRecovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, Rollback – return to some safe state,
restart process for that state.

 Starvation – same process may always be
picked as victim, include number of
rollback in cost factor.rollback in cost factor.

7.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Program for Bankers AlgorithmProgram for Bankers Algorithm
#include<stdio.h> #include<stdio.h>

 #include<conio.h>
 int max[10][10]; int max[10][10];
 int alloc[10][10];
 int need[10][10];
 int avail[10];
 int n,r;

 void inputt()
 { {
 int i,j;
 printf("Enter the no of Processes\t");

7.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 scanf("%d",&n);

 printf("Enter the no of resource types\t");
 scanf("%d",&r);
 printf("Enter the Max Matrix\n"); printf("Enter the Max Matrix\n");
 for(i=0;i<n;i++)
 {
 for(j=0;j<r;j++)
 {
 scanf("%d",&max[i][j]); scanf("%d",&max[i][j]);
 }
 } }
 printf("Enter the Allocation Matrix\n");

7.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 for(i=0;i<n;i++) for(i=0;i<n;i++)
 {
 for(j=0;j<r;j++) for(j=0;j<r;j++)
 {
 scanf("%d",&alloc[i][j]);
 }
 }
 printf("Enter the available Resources\n"); printf("Enter the available Resources\n");
 for(j=0;j<r;j++)
 { {
 scanf("%d",&avail[j]);
 }

}

7.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 }

 void show()
 {
 int i,j; int i,j;
 printf("Process\t Allocation\t Max\t Available\t");
 for(i=0;i<n;i++)
 {
 printf("\nP%d\t ",i);
 for(j=0;j<r;j++) for(j=0;j<r;j++)
 {
 printf("%d ",alloc[i][j]); printf("%d ",alloc[i][j]);
 }

7.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 printf("\t"); printf("\t");
 for(j=0;j<r;j++)
 { {
 printf("%d ",max[i][j]);
 }
 printf("\t");
 if(i==0)
 { {
 for(j=0;j<r;j++)
 printf("%d ",avail[j]); printf("%d ",avail[j]);
 }
 }

}

7.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 }

 void cal() void cal()
 {
 int finish[10],temp,need[10][10],count,fcount=0,l; int finish[10],temp,need[10][10],count,fcount=0,l;

 int i,j,k;
for(i=0;i<n;i++) for(i=0;i<n;i++)

 {
 finish[i]=0; finish[i]=0;
 }
 //find need matrix

7.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 for(i=0;i<n;i++) for(i=0;i<n;i++)
 {
 for(j=0;j<r;j++)for(j=0;j<r;j++)
 {
 need[i][j]=max[i][j]-alloc[i][j];
 } }
 }
 printf("\n"); printf("\n");
 for(k=0;k<n;k++)
 for(i=0;i<n;i++)
 {
 count=0;

7.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 for(j=0;j<r;j++)
 {
 if((finish[i]==0)&&(need[i][j]<=avail[j]))
 count++; count++;
 }
 if(count==r) if(count==r)
 {
 for(l=0;l<r;l++)
 avail[l]=avail[l]+alloc[i][l];
 finish[i]=1;
 printf("P%d->",i); printf("P%d->",i);
 break;
 }

7.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 }
 }

 for(i=0;i<n;i++)
 if(finish[i]) if(finish[i])
 fcount++;
 if(fcount==n)if(fcount==n)
 {
 printf("the system is in safe state");

 /* for(i=1;i<=n;i++)
 printf("%d",pr[i]); */ printf("%d",pr[i]); */
 }
 else
 printf("the system is not in safe state");
 getch();
 }

7.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 }

 void main()
 { {

 int i,j;
 clrscr();
 printf("Banker's Algorithm\n");
 inputt(); inputt();
 show();
 cal(); cal();
 getch();
 }

7.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 /* Banker's Algorithm
 Enter the no of Processes 5 Enter the no of Processes 5
 Enter the no of resource types 3
 Enter the Max Matrix
 7 5 3
 3 2 2
 9 0 2 9 0 2
 2 2 2
 4 3 3
 Enter the Allocation Matrix
 0 3 0
 3 0 2 3 0 2
 3 0 2
 2 1 1

7.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 2 1 1
 0 0 2

 Enter the available Resources
 2 1 0 2 1 0
 Process Allocation Max Available
 P0 0 3 0 7 5 3 2 1 0
 P1 3 0 2 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3
 the system is not in safe state the system is not in safe state
 */

7.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 /*
 Banker's Algorithm Banker's Algorithm
 Enter the no of Processes 5
 Enter the no of resource types 3
 Enter the Max Matrix
 7 5 3
 3 2 2 3 2 2
 9 0 2
 2 2 2 2 2 2
 4 3 3

7.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 Enter the Allocation Matrix
 0 1 0 0 1 0
 2 0 0
 3 0 2
 2 1 1
 0 0 2
 Enter the available Resources Enter the available Resources
 3 3 2
 Process Allocation Max Available
 P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3

7.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

 P4 0 0 2 4 3 3
 P1->P3->P0->P2->P4->the system is in safe state

End of Chapter 7End of Chapter 7End of Chapter 7End of Chapter 7

